
BEAM BMeasure-lib API Manual

Product BMeasure-125i
API Manual Version 1.0
Hardware Version 1.4.0
Software version 1.0.0
Date 2023-02-05

1. Contents

Table of Contents
1. Contents..1
2. Introduction...2
3. Overview...2
4. Beam-lib..2
5. BMeasure Unit Naming and Searching for Units...4
6. BMeasureUnit: Accessing a single BMeasure unit...4
7. BMeasureUnits: Accessing multiple synchronised BMeasure units..8
8. Language Bindings...10

8.1. C++..10
8.2. Python..10

9. Physical Interfaces..11
9.1. USB 2.0...11
9.2. Ethernet...11
9.3. Wifi..11
9.4. RS485..11

10. Supported Systems..11
10.1. Linux systems..11
10.2. Microsoft Windows systems...12

10.2.1. Minggw-64..12
10.2.2. Window Visual Studio..12

11. More Information..12

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 1 of 13

https://www.beam.ltd.uk/

BEAM BMeasure-lib API Manual

2. Introduction
The Beam BMeasure-125i unit is a flexible and powerful IoT system for data capture, data logging and
control in the laboratory, industrial and remote sensing arenas. It is based around an 8 channel, fully
differential, synchronous sampling, 24 bit ADC that can sample at speeds up to 128 ksps. Multiple units
can be connected together to provide more synchronously sampled channels.

This document describes the host API library allowing programs to be written to control the operation of
a BMeasure unit and acquire the data from it. The API operates over a number of different physical
interfaces including: USB 2.0, Ethernet, Wifi and RS485.

In addition to this document there is the on-line doxygen description of all of the API functions which can
be accessed at: https:// www .beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/index.html
and a set of C++ and Python examples.

3. Overview
The BMeasure API library, bmeasure-lib, is implemented in the C++ computer language. It has bindings
layered on top of this for Python, with Matlab due to be supported soon. The API has an object orientated
architecture. It has been designed as a general purpose API library for the Beam BMeasure-125i and
future BMeasure products. Currently it has ports to Linux (Redhat7, Fedora29, Ubuntu) and Microsoft
Windows 7, 8 and 10.

The API provides the following functionality:

• Find BMeasure units on the USB bus or local Ethernet and Wifi networks.

• Connect to one or more BMeasure units

• Fetch information and configure the BMeasure units.

• Start the BMeasure unit capturing and processing the sensor inputs.

• Capture the data from all of the analogue and digital channels from one or a combined set of
BMeasure units running in sync.

• Access the data log files on the unit and download them to the host.

• Configure the AWG to produce waveforms or set voltages on the analogue output channels.

• Operate relays, read switches and other auxiliary operations.

The BMeasure API is implemented using the Beam BOAP (Beam Object Access protocol)
communications system. It offers an BMeasureUnit API class to access an individual BMeasure unit in a
relatively low level manner and an BMeasureUnits API class to access a set of BMeasure units
synchronised together to operate as a single unit and with a queued data reception system..

The API supports threaded and non-threaded operation.

The following manual describes the API from a C++ programming perspective. The Python and other
language bindings are very similar the differences being noted under the particular language bindings
section.

4. Beam-lib
The API uses the Beam-lib C++ class library. This library provides a set of cross-platform simple classes
for strings, errors, networking, threading, DSP etc. The core classes include:

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 2 of 13

https://www.beam.ltd.uk/
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/index.html
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/index.html
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/index.html

BEAM BMeasure-lib API Manual

BString A simple, variable length, ASCII or UTF8 string class. It supports standard string
operations such as concatenation, searching and wild-card comparisons etc.

BError This class encapsulates and error number and an errors string. Most functions return
a BError object to indicate the status of the functions operation.

BList<Type> A simple doubly linked list of a particular object
BArray<Type> A single dimensional array of objects laid out in consecutive memory locations.
BSocket Network socket

Below is a set of short examples to show basic usage of the core Beam-lib classes.

BStrings store variable length ASCII or UTF8 strings on the heap. It uses efficient shared reference
counted string. Some examples:

BString s1;
BString s2;

s1 = s1 + s2;
if((s1 == s2) || (s1 > s2)){
}

s1 = s2.subString(0, 3);
s1 = stringToUppercase(s2);

cout << s1 << “\n”;
printf(“%s\n”, s1.retStr());

BError class is used to return errors from functions, it encapsulates an error number and a string. It can be
used in “if” statements and passed back up the calling function tree as well as through exceptions. For
example:

BError err;

if(err = func()){
cerr << “Error: num: “ << err.num() << “ string: ” << err.getString() << “\n”;
printf(“Error: num: %d string: %s\n”, err.num(), err.str());

}

The BList class offers a template list allowing different objects to be stored. Some examples of its use are
show below:

BList<int> l;
BIter i;

l.append(1);
l.append(2);
for(l.start(i); !l.isEnd(i); l.next(i)){

printf(“Value: %d\n”, l[i]);
}

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 3 of 13

https://www.beam.ltd.uk/

BEAM BMeasure-lib API Manual
The BArray class offers a template array allowing different objects to be stored in consecutive memory
locations. Some examples of its use are show below:

BArray<BString> a;

a.setSize(64);
a[32] = “Hello”;

for(int i = 0; i < a.size(); i++){
printf(“Position: %d Value: %s\n”, i, a[i].retStr());

}

The Beam-lib library is documented at: https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/b eam-
lib /html/index.html

5. BMeasure Unit Naming and Searching for Units
BMeasure units are accessed using a URL unit naming string. For the three different physical interfaces
this has a format of:

• USB: “boapu://<serial number>”

• Network: “boapn://<IP address or host name>”

• RS485: “boaps://<serial device name>”

To connect to a BMeasure unit the appropriate URL string can be used or a search of the local USB
devices or local network devices can be carried out. There are two functions available to search for USB
and Network devices. These are:

BError BMeasureUnit::findDevicesUsb(BList<BMeasureUnitDevice>& devices);

and

BError BMeasureUnit::findDevicesNetwork(BList<BMeasureUnitDevice>& devices);

These functions return the standard BError object to indicate any errors and a list of the BMeasure devices
found.

The BMeasureUnitDevice objects have two BString members: serialNumber holding the units serial
number string and device holding the device access URL.

6. BMeasureUnit: Accessing a single BMeasure unit
The BMeasureUnit class provides all of the functions to control and fetch data from a single BMeasure
unit in a relativelt low level and simple way. Many of its functions result in a RPC (remote procedure
call) to the BMeasure unit over the physical communications interface in use. The BMeasure class it is
based on provides much of this functionality.

There is a connect() function to connect to an individual BMeasure unit whereupon any of the functions
can be used. In order to receive data you mush derive a new class from this and override the void
sendDataServe1(const DataBlock &dataBlock); function. This function will be repeatedly called with a
set of data in a DataBlock. The status field in the DataBlock will indicate the end of a measurement
process and any errors that have occurred.

The BMeasureUnit class can operated in threaded or non-threaded modes. Typically it is used in a

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 4 of 13

https://www.beam.ltd.uk/
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1DataBlock.html
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnit.html#a7d5ee0710998dd23e1492fe8eabc7679
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnitDevice.html
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnitDevice.html
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnit.html#a55efd22a3bca4adaa5a45db898194830
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnitDevice.html
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnit.html#ad6c8e0fd065eec67cb7721b98071ee41
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/index.html
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/index.html
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/index.html
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/index.html

BEAM BMeasure-lib API Manual
threaded mode (first parameter to the BMeasureUnit’s constructor is set to 1 or True). In the threaded
mode an internal thread handles reception of packets from the BMeasure unit. This includes replies to
commands and asynchronous data. The sendDataServe1() function will be called from this internal thread.
In non threaded operation the RPC calls will function as normal but if data is to be acquired either the
manual measure() function has to be used to acquire a single set of data samples or the classes
processRx() function must be continually called to process the incoming data packets.

Two typical simple examples of its use for simple configuration follows:
/***
 * Example001-config.cpp
 * T.Barnaby, BEAM Ltd, 2018-11-28

 */
#include <BMeasureUnit.h>
#include <unistd.h>

using namespace BMeasureApi;

// Function to configure AWG
BError test1(){

BError err;
BList<BMeasureUnitDevice> devices;
BString device;
BMeasureUnit bmeasure;
Information info;
Configuration config;
AwgConfig awg;

printf("Find BMeasure units\n");
if(err = BMeasureUnit::findDevicesUsb(devices)){

return err;
}
if(devices.number() == 0){

return err.set(1, "No USB BMeasure units found\n");
}
device = devices[0].device;

printf("Start Processing Task\n");
bmeasure.start();

printf("Connect\n");
if(err = bmeasure.connect(device))

return err;

printf("Get Info\n");
if(err = bmeasure.getInformation(info))

return err;

printf("NumChannels: %d\n", info.numChannels);

//printf("Exit\n"); return err;

printf("Get Config\n");
if(err = bmeasure.getConfig(config))

return err;

// Set AWG
printf("Set AWG\n");

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 5 of 13

https://www.beam.ltd.uk/
https://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnit.html#a7d5ee0710998dd23e1492fe8eabc7679

BEAM BMeasure-lib API Manual
//awg.waveform = WaveformNone;
awg.waveform = WaveformSine;
//awg.waveform = WaveformSquare;
//awg.waveform = WaveformTriangle;
//awg.waveform = WaveformNoise;
awg.frequency = 1000;
awg.amplitude = 4;
awg.offset = 0;
awg.duty = 50;
err = bmeasure.setAwgConfig(awg);

return err;
}

int main(){
BError err;

if(err = test1()){
printf("Error: %d %s\n", err.getErrorNo(), err.str());
return 1;

}

printf("Complete\n");

return 0;
}

An equivalent of this in the Python language follows:
#!/usr/bin/python3
##
example002-config.py BMeasure API example code for a configuration Client
T.Barnaby, BEAM Ltd, 2018-10-20
##
#
Example code to show operating a BMeasure instrument.
#
import sys
import time
import getopt
from threading import Thread
from bmeasure import *

Function to read some data
def find():

print("Find devices");
(err, devices) = BMeasureUnit.findDevicesUsb();

return err;

def test1():
bmeasure = BMeasureUnit(True);

print("Find BMeasure units");
(err, devices) = BMeasureUnit.findDevicesUsb();
if(err):

return err;

if(devices.number() == 0):

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 6 of 13

https://www.beam.ltd.uk/

BEAM BMeasure-lib API Manual
return err.set(1, "No USB BMeasure units found\n");

print("Found", len(devices));
device = devices[0].device;

print("Start Communications Task");
bmeasure.start();

print("Connect");
err = bmeasure.connect(device);
if(err):

return err;

print("Get Info");
(err, info) = bmeasure.getInformation();
if(err):

return err;

print("NumChannels: "), info.numChannels;

print("Get Config");
(err, config) = bmeasure.getConfig();
if(err):

return err;

Set AWG
print("Set AWG");
awg = AwgConfig();
#awg.waveform = WaveformNone;
awg.waveform = WaveformSine;
#awg.waveform = WaveformSquare;
#awg.waveform = WaveformTriangle;
#awg.waveform = WaveformNoise;
awg.frequency = 1000;
awg.amplitude = 4;
awg.offset = 0;
awg.duty = 50;
err = bmeasure.setAwgConfig(awg);
if(err):

return err;

return err;

def main():
if(0):

err = find();
if(err):

print("Error:"), err.getErrorNo(), err.getString();
return 1;

err = test1();
if(err):

print("Error:"), err.getErrorNo(), err.getString();
return 1;

print("Complete");

return 0;

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 7 of 13

https://www.beam.ltd.uk/

BEAM BMeasure-lib API Manual

if __name__ == "__main__":
main();

There are more examples in the examples directory of the software release.

7. BMeasureUnits: Accessing multiple synchronised BMeasure
units
The BMeasureUnits class offers a more sophisticated API interface that allows access to multiple
synchronised BMeasure units as if they were a single unit. It also offers a data buffering system to
simplify data capture. It can be used for one or more BMeasure units.

The BMeasureUnits class manages a set of BMeasure units using the unit*() functions. Typically you
would use the unitAdd() or unitsFind() functions to add a unit to its list or search for units adding all
found it its internal list. Once the units have been added they can be set into a particular order. The first
unit, unit 0, will be used as the master unit for synchronisation purposes. Once the units have been setup
the unitsConnect() function can be employed to connect to all of the units.

The BMeasureUnits class provides a reduced set of the BMeasureUnit classes RPC calls to the BMeasure
units. These functions either apply to the master unit or all of the units. For example the
setConfigMeasurement() sets the measurement configuration for all of the units. An individual units API
can be accessed using the unit() function which returns a reference to a BMeasureUnit1 object used for
communications.

Data is handled by an inbuilt DataBlock queue which can have up to 2 readers. A client program can use
the dataWait() function to wait for data, the dataRead() function to get a pointer to the next DataBlock and
the dataDone() function to tell the BMeasureUnits class that it has finished with the DataBlock.

An example of a simple data capture client follows:
/***
 * Example010-dataClient-multi.cpp
 * T.Barnaby, BEAM Ltd, 2019-10-09

 */
#include <BMeasureUnits.h>
#include <unistd.h>

using namespace BMeasureApi;

// Function to read some data
BError test1(){

BError err;
BList<BMeasureUnitDevice> devices;
BString device;
BMeasureUnits bmeasure(1);
Information info;
Configuration config;
MeasurementConfig mc;
DataBlock* data;
BUInt c;

printf("Start Processing Task\n");
bmeasure.start();

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 8 of 13

https://www.beam.ltd.uk/
http://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnits.html#aa5313563e932bde636708f6953383ade
http://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnits.html#a680060dd78e2874e4b5b6259b20b0af4
http://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnits.html#af50eb9c49280a1ccca89ae27a86bc095
http://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnit1.html
http://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnits.html#a48235da7774647455570a8a7e5a709d1
http://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnits.html#abdf7672404bd11ef17935a68b8d74404
http://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnits.html#a19bc5da07f6fe00301afebb48b61f84e
http://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnits.html#a2b5b660dac45ee3c67282909129256ba
http://portal.beam.ltd.uk/files/products/bmeasure-125i/doc/bmeasure-api/html/classBMeasureApi_1_1BMeasureUnits.html#ae483d680c576fe5144d7adf40f75d4c0

BEAM BMeasure-lib API Manual
printf("Find BMeasure units\n");
if(err = BMeasureUnit::findDevicesUsb(devices)){

return err;
}
if(devices.number() == 0){

return err.set(1, "No USB BMeasure units found\n");
}

if(err = bmeasure.unitAdd("", devices[0].device))
return err;

printf("Connect\n");
bmeasure.unitSetEnabled(0, 1);
if(err = bmeasure.unitsConnect())

return err;

printf("Get Info\n");
if(err = bmeasure.getInformation(info))

return err;

printf("NumChannels: %d\n", info.numChannels);

//printf("Exit\n"); return err;

printf("Get Config\n");
if(err = bmeasure.getConfig(config))

return err;

printf("Configure measurement\n");
mc.measureMode = MeasureModeOneShot;
mc.triggerMode = TriggerModeOff;
mc.triggerConfig = TriggerConfigNone;
mc.triggerChannel = 0;
mc.triggerLevel = 0;
mc.triggerDelay = 0;
mc.sampleRate = 8000.0;
mc.measurePeriod = 0;
mc.numSamples0 = 100;
mc.numSamples1 = 0;
if(err = bmeasure.setMeasurementConfig(mc))

return err;

printf("Run measurement\n");
config.captureData = 1;
if(err = bmeasure.setConfig(config))

return err;

bmeasure.dataSetNumStreams(1);

if(err = bmeasure.setMode(ModeRun))
return err;

printf("Loop fetching data\n");
while(1){

if(err = bmeasure.dataWait(0))
return err;

data = bmeasure.dataRead(0);
printf("DataBlock: from: %d numChannels: %d numSamples: %d\n", data-

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 9 of 13

https://www.beam.ltd.uk/

BEAM BMeasure-lib API Manual
>source, data->numChannels, data->numSamples);

bmeasure.dataDone(0);

if(! (data->status & StatusRun))
break;

}

bmeasure.unitsDisconnect();

return err;
}

int main(){
BError err;

if(err = test1()){
printf("Error: %d %s\n", err.getErrorNo(), err.str());
return 1;

}

printf("Complete\n");

return 0;
}

8. Language Bindings

8.1. C++
The bmeasure-lib API is written in C++, so this is the base API that is documented in the doxygen based
on-line API documentation.

8.2. Python
The Python API is built on top of the standard BMeasure-lib 'C++' API using the SWIG API generator.
Thus all of the standard BMeasure-lib C++ API documentation applies however there are some
differences due to the language facility and syntax differences.

The Python language is interpreted rather than compiled and does not require strict types like 'C++'. This
can help speed up the development of simple tools and programs, but it can result in less robust and less
maintainable code.

To use the BMeasure-lib API library import the “bmeasure” module. The SWIG system wraps the BDS
C++ objects in a Python object layer. Your can then interact with the C++ objects from Python in the
same way as you would have done in C++ apart from a few differences.

1. Reference returns: 'C++' allows references/pointers to be passed as function arguments which
allows functions to return values. Python does not support this. Instead Python provides the ability
for functions to return multiple items on the left-hand side. When using an API call that in 'C++'
returns items by reference, the Python equivalent will have these returned on the left hand side.
For example:

err = bmeasure.getStatus(NodeStatus& status); // C++

(err, status) = bmeasure.getStatus(); # Python

2. Testing for error returns. All BDS API calls return a BError object. This provides information as

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 10 of 13

https://www.beam.ltd.uk/

BEAM BMeasure-lib API Manual
to if the function completed successfully or if there was an error. The BError object contains both
an error number and an error string. 'C++' allows an “if” statement to have an assignment operator.
This makes returning and checking errors quite concise. Python does not allow this and requires a
separate assignment and if statement. For example:

if(err = bmeasure.getStatus(status)){
return err;

}
(err, status) = bmeasure.getStatus();
if(err):

return err;

9. Physical Interfaces
A BMeasure unit has a number of possible interfaces that the bmeasure-lib will communicate over. These
include the following.

9.1. USB 2.0
This interface is suitable for local data acquisition and configuration uses. When connected to a USB 2.0
full speed (480 MBits/s) host it can transfer data at the full real-time capture rate of 128 ksps.

9.2. Ethernet
This interface is suitable for local and remote data acquisition and configuration uses. It can transfer data
at up to 100 MBits/s and assuming the network path supports a bit rate of greater than 40 Mbits/s to the
host, it can transfer data at the full real-time capture rate of 128 ksps.

9.3. Wifi
The BMeasure unit can connect via is internal Wifi interface to a local Wifi access point. The bmeasure-
lib API can connect over this using the normal TCP/IP networking system. It’s maximum bit rate is 20
Mbits/s but this is limited by the Wifi access point, the distance from the Wifi AP and the number of Wifi
and other 2.4 GHz spectrum users. At 20 MBits/s, it can transfer data at the full real-time capture rate of
64 ksps but 32 ksps is a more likely limit.

9.4. RS485
The RS485 interface provides a local or long range communications interface. It can operate at up to 1
MBits/s over about 400m range. At 100kBits/s it can operate over a 1km range.

10. Supported Systems

10.1. Linux systems
The BMeasure software install system installs the C++ and Python bmeasure-lib API development files
onto the system in question. All of the BMeasure files are located in the /usr/share/BMeasure directory.
We support 64bit systems only. The Python and C++ examples are in /usr/share/BMeasure/examples.

For Python development you should install the Python3 environment using your systems software
package management system. For C++ you should install the C++ development toolset.

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 11 of 13

https://www.beam.ltd.uk/

BEAM BMeasure-lib API Manual
The BMeasure package sets the PYTHONPATH environment variable to point to the bmeasure-lib
Python module so that python examples can be run. Note that the system works only with Python 3.

For C++ development, the directories /usr/share/BMeasure/include/Beam and
/usr/share/BMeasure/include/BMeasure should be added to the include path of your C++ development
environment and the libraries, libBeam.a and libBMeasure.a linked from the path
/usr/share/BMeasure/lib64. The Makefile in the examples shows how to do this for a simple make/gcc
based build.

10.2. Microsoft Windows systems
The BMeasure software install system installs the C++ and Python bmeasure-lib API development files
onto the system in question. All of the BMeasure files are located in the “C:/Program Files/BMeasure”
directory. We support 64bit systems only but have 32bit versions of the API libraries available. The
Python and C++ examples are in “C:/Program Files/BMeasure/examples”.

For the bmeasure-lib Python host API, we support the standard Python 3.7.4 from
https://www.python.org/. This can be downloaded and installed from:
https://www.python.org/downloads/release/python-374/. The Windows x86-64 executable installer is the
normal method.

Notes:

• Use the Custom install option and tick the option to install for all users.

• It is useful to tick the option “Add Python 3.7 to PATH”

The BMeasure package sets the PYTHONPATH environment variable to point to the bmeasure-lib
Python module so that python examples can be run. Note that the system works only with Python 3.

10.2.1. Minggw-64
For C++ development, the directories “C:/Program Files/BMeasure/include/Beam” and “C:/Program
Files/BMeasure/include/BMeasure” should be added to the include path of your C++ development
environment and the libraries, libBeam.a and libBMeasure.a linked from the path “C:/Program
Files/BMeasure/lib64”. The Makefile in the examples shows how to do this for a simple GNU make/gcc
(Mingw 64bit) based build.

10.2.2. Window Visual Studio
For C++ development, the directories “C:/Program Files/BMeasure/include/Beam” and “C:/Program
Files/BMeasure/include/BMeasure” should be added to the include path of your C++ development
environment and the libraries, libBeam.a and libBMeasure.a linked from the path “C:/Program
Files/BMeasure/lib64”.

The pthreads package should be installed. In visual studio use the menu item -

Project→Manage Nuget Packages

In browse tab search for phtread

Select install

11. More Information
For more information please refer to our WEB site at:

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 12 of 13

https://www.beam.ltd.uk/
https://www.python.org/ftp/python/3.7.4/python-3.7.4-amd64.exe
https://www.python.org/downloads/release/python-374/
https://www.python.org/

BEAM BMeasure-lib API Manual
http://www.beam.ltd.uk/products/bmeasure-125i/index.html

The online API reference is at: http://www.beam.ltd.uk/products/bmeasure-125i/doc/bmeasure-lib-
reference/html/index.html

Beam Ltd, BMeasure-lib, Version 1.0 Date: 2023-02-05
Web: https://www.beam.ltd.uk Page: 13 of 13

https://www.beam.ltd.uk/
http://www.beam.ltd.uk/products/bmeasure-125i/doc/bmeasure-lib-reference/html/index.html
http://www.beam.ltd.uk/products/bmeasure-125i/doc/bmeasure-lib-reference/html/index.html
http://www.beam.ltd.uk/products/bmeasure-125i/index.html

	1. Contents
	2. Introduction
	3. Overview
	4. Beam-lib
	5. BMeasure Unit Naming and Searching for Units
	6. BMeasureUnit: Accessing a single BMeasure unit
	7. BMeasureUnits: Accessing multiple synchronised BMeasure units
	8. Language Bindings
	8.1. C++
	8.2. Python

	9. Physical Interfaces
	9.1. USB 2.0
	9.2. Ethernet
	9.3. Wifi
	9.4. RS485

	10. Supported Systems
	10.1. Linux systems
	10.2. Microsoft Windows systems
	10.2.1. Minggw-64
	10.2.2. Window Visual Studio

	11. More Information

